Đáp Án Đề Thi Violympic Toán Lớp 7 Vòng 3 Năm 2016, Các Dạng Toán Trong Đề Thi Violympic Toán Lớp 7

Các dạng toán trong đề thi Violympic toán lớp 7

Các dạng toán luyện thi Violympic lớp 7 là bộ đề ôn luyện tổng hợp mà bocdau.com đã dày công sưu tầm và giới thiệu dành cho các em học sinh lớp 7 giúp các em tham khảo thêm các dạng đề Toán, tự ôn luyện kiến thức trước khi bước vào kỳ thi giải Toán qua mạng Internet. Mời các em cùng tham khảo.

Đang xem: đề thi violympic toán lớp 7 vòng 3 năm 2016

Đề thi Violympic Toán lớp 7 vòng 12 năm 2015 – 2016

Đề thi Violympic Toán lớp 7 vòng 15 năm 2016 – 2017

Dạng 1: Dãy số mà các số hạng cách đều.

Xem thêm: câu hỏi rung chuông vàng lớp 2

Bài 1: Tính B = 1 + 2+ 3+ …+ 98+99

B = 1 + (2 + 3 + 4+…+ 98 + 99). Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

(2 + 99) + (3 + 98) +..+ (51 + 50) = 49.101 = 4949 khi đó B = 1 + 4949 = 4950

Bài 2: Tính C = 1 + 3 + 5 +…+ 997 + 999

Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ. Áp dụng các bài trên ta có

C = (1 + 999) + (3 + 997)+…+ (499 + 501)= 1000.250 = 250000 (Tổng trên có 250 cặp số)

Dạng 2: Dãy số mà các số hạng không cách đều.

Xem thêm: I Learn Smart Start Student Book Grade 3, I Learn Smart Start Grade 3

Bài 1: Tính A = 1.2 + 2.3 + 3.4 +…+ n.(n+1)

Lời giải

Ta có

3A = 1.2.3 + 2.3.3 +…+ n(n + 1).3 = 1.2.(3-0) + 2.3.(3 – 1 )+…+ n(n + 1)<(n-2)-(n-1)>

=1.2.3 – 1.2.0 + 2.3.3 – 1.2.3 +…+ n(n+1)(n-2)-(n-1)n(n+1)=n(n+1)(n+2)

=> A = n(n+1)(n+2)/3

* Tổng quát hóa ta có:

k(k+1)(k+2)-(k-1)(k+1)= 3k(k+1). Trong đó k= 1;2;3…

Ta dễ dàng chứng minh công thức trên như sau:

K(k+1)(k+2)-(k-1)(k+1)=k(k+1)<(k+2)-(k-1)>= 3k(k+1)

Bài 2. Tính B = 1.2.3 + 2.3.4 +….+ (n-1)n(n+1)

Lời giải

Áp dụng tính kế thừa của bài 1 ta có:

4B= 1.2.3.4 + 2.3.4.4 +…+ (n-1)n(n+1).4

= 1.2.3.4 – 0.1.2.3 + 2.3.4.5-1.2.3.4 +…+ (n-1)n(n+1)(n+2)-<(n-2)(n-1)n(n+1)>

= (n-1)n(n+1)(n+2)-0.1.2.3 = (n-1)n(n+1)(n+2)

=> B = (n-1)n(n+1)(n+2)/4

Đánh giá bài viết
116 26.915
Chia sẻ bài viết
Tải về Bản in
Tham khảo thêm
0 Bình luận
Sắp xếp theo Mặc định Mới nhất Cũ nhất

*

Luyện thi
Giới thiệu Chính sách Theo dõi chúng tôi Tải ứng dụng Chứng nhận

*

meta.vn. Giấy phép số 366/GP-BTTTT do Bộ TTTT cấp.

Viết một bình luận