Đề Cương Ôn Tập Chương 2 Hình Học 9 Ôn Tập Chương 2 Đường Tròn

Lớp 1-2-3

Lớp 1

Lớp 2

Vở bài tập

Lớp 3

Vở bài tập

Đề kiểm tra

Lớp 4

Sách giáo khoa

Sách/Vở bài tập

Đề kiểm tra

Lớp 5

Sách giáo khoa

Sách/Vở bài tập

Đề kiểm tra

Lớp 6

Sách giáo khoa

Sách/Vở bài tập

Đề kiểm tra

Chuyên đề & Trắc nghiệm

Lớp 7

Sách giáo khoa

Sách/Vở bài tập

Đề kiểm tra

Chuyên đề & Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài tập

Đề kiểm tra

Chuyên đề & Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài tập

Đề kiểm tra

Chuyên đề & Trắc nghiệm

Lớp 10

Sách giáo khoa

Sách/Vở bài tập

Đề kiểm tra

Chuyên đề & Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài tập

Đề kiểm tra

Chuyên đề & Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài tập

Đề kiểm tra

Chuyên đề & Trắc nghiệm

IT

Ngữ pháp Tiếng Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu

*

Chuyên đề Toán 9Chuyên đề Hình học 9Chuyên đề: Hệ thức lượng trong tam giác vuôngChuyên đề: Đường trònChuyên đề: Góc với đường trònChuyên đề: Hình Trụ – Hình Nón – Hình CầuChuyên đề Đại Số 9Chuyên đề: Căn bậc haiChuyên đề: Hàm số bậc nhất Chuyên đề: Hệ hai phương trình bậc nhất hai ẩnChuyên đề: Phương trình bậc hai một ẩn số
Ôn tập chương 2 Hình học 9
Trang trước
Trang sau

Ôn tập chương 2 Hình học 9

A. Bài tập tự luận

Bài 1: Cho đoạn thẳng AB, điểm C nằm giữa A và B. Vẽ về một phía của AB các nửa đường tròn có đường kính theo thứ tự là AB, AC, CB. Đường vuông góc với AB tại C cắt nửa đường tròn lớn tại D. DA,DB cắt các nửa đường tròn có đường kính AC, CB theo thứ tự tại M, N.

Đang xem: đề cương ôn tập chương 2 hình học 9

a, Tứ giác DMCN là hình gì? Vì sao?

b, Chứng minh DM.DA=DN.DB

c, Chứng minh rằng MN là tiếp tuyến chung của các nửa đường tròn có đường kính AC và CB.

d, Điểm C ở vị trí nào trên AB thì MN có độ dài lớn nhất.

Hướng dẫn giải

*

a, Ta có: Tam giác AMC nội tiếp đường tròn đường kính AC => ∠AMC = 90o

Tam giác CNB nội tiếp đường tròn đường kính CB => ∠CNB = 90o

Tam giác ADB nội tiếp đường tròn đường kính AB => ∠ADB = 900

Suy ra tứ giác DMCN là hình chữ nhật.

b, Xét tam giác vuông DCA có :

DC2 = DM.MA (1) (theo hệ thức lượng trong tam giác vuông)

Xét tam giác vuông DCB có:

DC2 = DN.DB (2) (theo hệ thức lượng trong tam giác vuông)

Từ (1) và (2) ta suy ra DM.MA = DN.NB

c, Vì DMCN là hình chữ nhật nên IM=IC

suy ra tam giác IMC cân tại I

=> ∠M2 = ∠C2

Vì tam giác MFC cân tại F nên ∠M1 = ∠C1

Mà ∠C1 + ∠C2 = 90o => ∠M1 + ∠M2 = 90o

Hay ∠FMN = 90o => FM ⊥ MN

Chứng minh tương tự ∠MNC = 90o => HN ⊥ MN

d, Ta có: DC=MN( vì DMCN là hình chữ nhật)

mà DC ≤ DO => MN ≤ DO

MN = DO khi C ≡ O

Suy ra C là trung điểm của AB.

Bài 2: Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung DE, D thuộc đường tròn tâm O, E thuộc đường tròn tâm O’. Kẻ tiếp tuyến chung trong tại A, cắt DE ở I. Gọi M là giao điểm của OI và AD, N là giao điểm của O’I và AE.

a, Tứ giác AMIN là hình gì? Vì sao?

b, Chứng minh IM.IO=IN.IO’

c, Chứng minh rằng O O’ là tiếp tuyến của đường tròn có đường kính là DE.

d, Tính độ dài DE biết rằng OA=5cm, O’A=3,2 cm.

Hướng dẫn giải

*

a, ID và IA là 2 tiếp tuyến cắt nhau tại I.

Suy ra ID = IA (1)

Mà OD = OA

Suy ra IO là trung trực của AD

=> IO ⊥ AD => ∠IMA = 90o

+ IE và IA là 2 tiếp tuyến cắt nhau tại I

Suy ra IA=IE (2)

Mà O’A=O’E

Suy ra IO’ là trung trực của AE

=> IO ⊥ AE => ∠INA = 90o

Từ (1) và (2) suy ra IA=ID=IE

Suy ra tam giác DAE vuông tại A

=> ∠DAE = 90o

Tứ giác MINA có 3 góc ∠IMA = 90o ; ∠INA = 90o; ∠DAE = 90o nên tứ giác MINA là hình chữ nhật.

b, Xét tam giác vuông IAO có AN ⊥ IO” :

IA2 = IM.IO (3) (theo hệ thức lượng trong tam giác).

Xét tam giác vuông IAO’ có :

IA2 = IN.IO” (4) (theo hệ thức lượng trong tam giác).

Từ (3) và (4) ta suy ra IM.IO = IN.IO”

c, Theo trên ta có tam giác DAE vuông tại A

suy ra 3 điểm D, E, A nội tiếp đường tròn đường kính DE (5)

Do IA là tiếp tuyến chung của 2 đường tròn (O) và (O’)

=> IA ⊥ OO” (6)

Từ (5) và (6) ta suy ra OO’ là tiếp tuyến của đường tròn đường kính DE.

Xem thêm: 17 Nguyên Tắc Vàng Trong Làm Việc Nhóm Pdf /Prc/Epub/Mobi, 17 Nguyên Tắc Vàng Trong Làm Việc Nhóm

d, Xét tam giác vuông IOO’

IA2 = OA . OA”

=> IA2 = 5.3,2 =16(cm)

Vậy IA = 4cm.

*

Bài 3: Cho đường tròn (O), đường kính AB, đểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M.BN cắt đường tròn ở C.Gọi E là giao điểm của AC và BM.

a, Chứng minh rằng NE ⊥ AB .

b, Gọi F là điểm đối xứng với E qua M. Chứng minh rằng FA là tiếp tuyến của đường tròn(O).

c, Chứng minh rằng FN là tiếp tuyến của đường tròn(B; BA).

Hướng dẫn giải

*

a, Tam giác AMB nội tiếp đường tròn đường kính AB nên ∠AMB = 90o => AM ⊥ MB

Tam giác ACB nội tiếp đường tròn đường kính AB nên ∠ACB = 90o => AC ⊥ CB

Suy ra E là trực tâm của tam giác NAB, do đó NE ⊥ AB .

b, Tứ giác AFNE có các đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành( tứ giác này còn là hình thoi). Do đó FA//NE.

Do NE ⊥ AB nên FA ⊥ AB .

Suy ra FA là tiếp tuyến của đường tròn (O).

c, Tam giác ABN có đường cao BM cũng là đường trung tuyến nên là tam giác cân. Suy ra BN=BA. Do đó BN là bán kính của đường tròn (B;BA).

Tam giác ABN cân tại B nên ∠BNA = ∠BAN (1)

Tam giác AFN có đường cao FM là đường trung tuyến nên là tam giác cân, suy ra ∠N1 = ∠A1 (2)

Từ (1) và (2) suy ra ∠BNA + ∠N1 = ∠BAN + ∠A1 tức là ∠FNB = ∠FAB

Ta lại có: ∠FAB = 90o (câu b), nên ∠FNB = 90 o . Do đó FN là tiếp tuyến của đường tròn (B).

Xem thêm: sách vnen lớp 6

Bài 4: Cho tam giác vuông tại A( AB o

Suy ra HA là tiếp tuyến của đường tròn (O).

Tham khảo thêm các Chuyên đề Toán lớp 9 khác:

Mục lục các Chuyên đề Toán lớp 9:

Chuyên đề Đại Số 9Chuyên đề Hình Học 9

Ngân hàng trắc nghiệm lớp 9 tại khoahoc.bocdau.com

Viết một bình luận